陽電子によるサブナノスケール欠陥の検出

技術解説 "New

白井泰治*

"New positron lifetime spectrometer to inspect sub-nano scale defects in materials" Key Words : Positron Annihilation, Positron Lifetime, Defects, Materials, Non-Destructive Inspection

1.はじめに

陽電子消滅法が、独自の有用性を持っているのは、 物質中の高分解能電子顕微鏡でも見えない原子スケ ールの格子欠陥の種類と量を非破壊で検出できるか らである。原理は簡単で、金属材料中に転位や空孔 やボイド等が存在すると、それらの欠陥は周囲に比 べて負に帯電しているため、正の電荷をもつ陽電子 はそれらの欠陥に捕獲される。一方、空孔やボイド 中は電子密度が低いために、捕獲された陽電子は対 消滅する相手の電子と出合う確率が減少し、結果的 に長生きする。つまり、陽電子を被検査物に照射し、 陽電子が内部の電子と対消滅して 線となって放射 されるまでの時間を計測すれば、非接触で内部の欠 陥種とその量を知ることができる。ただし、実際に 非破壊検査装置として用いる場合、従来から物性研 究に用いられてきた陽電子寿命測定法では多くの制 約がある。これらの制約を取り除くために、我々が 新しく開発している計測手法を、以下で説明する。

 2.従来の陽電子寿命測定システム(- 同時計 測法)

まず、一般的に用いられている陽電子寿命測定シ ステム全体の構成と原理(図1参照)について述べ る〔1〕。²²Na線源から放出された陽電子はそれを はさむ試料中に入射し、その中の電子と対消滅し2

*Yasuharu SHIRAI

1950年7月生 京都大学大学院工学研究科博士後期課程 (1979年) 現在.大阪大学大学院工学研究科 教授 工学博士 材料物性 TEL:06-6879-7490 FAX:03-6879-7492 E-mail:shirai@mat.eng.osaka-u.ac.jp

図1 従来の陽電子寿命測定システム(同時計測法) の構成。各モジュールの詳細は本文参照。

本の消滅 線(電子、陽電子の質量に対応し、それ ぞれE=mc²=0.511MeVのエネルギーを持つ)になる。 陽電子の生成時刻は、陽電子とほとんど同時に線源 から放出される1.275MeVの 線を検出することに よって代用し、消滅時刻は0.511MeVの消滅 線を 検出した時刻とする。各 線の検出にはBaF2シン チレーターと光電子増倍管(Photomultiplier Tube, PMT)の組み合わせを用いる。BaF2シンチレーター は、蛍光の減衰時間が短いため時間分解能が良く、 さらに密度が高いため 線吸収率が高く計数効率も 良い。BaF2シンチレーターに入射した 線は、約 200~400nmの波長の蛍光に変換され、それをPMT が光電子に変換し、電気的におよそ107倍程度に増 幅し、入射 線のエネルギーに対応した波高のパル ス信号として取り出される。

PMTから出力されるパルス信号は、コンスタント・ フラクション・ディスクリミネーター(Constant Fraction Discriminator, CFD)に送られる。スター ト側のCFDにはスタート信号(1.275 MeVの 線 に対応する光電子ピークとコンプトン散乱による信 号の一部)、ストップ側のディファレンシャルCFD (Differential Constant Fraction Discriminator, DCFD) にはストップ信号(0.511 MeVの 線に対応する光 電子ピーク)のエネルギーに対応したエネルギー範 囲を設定しておき、これによりそれぞれの信号を区 別し、波高依存のないスタートとストップのタイミ ング信号を得る。この方法は、スタート信号もスト ップ信号も 線を用いるので、 同時計測法と 呼ばれる。

このタイミング信号は時間差波高変換器(Timeto-Amplitude Converter, TAC) に送られ、スタート 側のタイミング信号とストップ側のタイミング信号 の時間差が電圧(波高)に変換される。このとき、 装置の有限な時間分解能のために生じる見掛けの負 の時間部分も取り入れるために、ナノ・ディレー (nano delay)を用いてストップ側のタイミング信 号を一定時間遅延させる。TAC の出力はアナログ・ デジタル変換器(Analog-to-Digital Converter, ADC) により AD 変換され、マルチチャンネル・アナライ ザー(Multichannel Analyzer, MCA) に蓄積される。 MCA に蓄積される陽電子寿命のヒストグラム(横軸; 時間、縦軸; 消滅陽電子数) が陽電子寿命スペクト ルである。このスペクトルを専用ソフトで解析し、 試料中の結晶格子欠陥の種類と量を知ることができ **3**[1]

3. +- 同時計測陽電子寿命測定システム

従来用いられてきた - 同時計測法(上記)で は、陽電子が被検体に入射したことを保障するため 陽電子線源を試料で包み込む必要があり、非破壊で の陽電子寿命測定がほとんど不可能である。一方、 従来ほとんど用いられることのなかった +- 同時 計測法という陽電子寿命測定法がある。これは、検 査体に入射する陽電子(+)そのものを直接検出 してスタート信号とし、ストップ信号として試料中 での電子との対消滅の際に放出される消滅 線を検 出して、その時間差測定により陽電子寿命スペクト ルを得る方法である。この方法では被検査物に入射 する陽電子を直接検知するため、従来法のように陽 電子線源を被検査物に埋め込む必要がなく、線源と 試料を分離することができる(図2参照)。

近年、実用構造材料の材質劣化診断分野において、 ナノ欠陥を極めて敏感に検出できる陽電子消滅法が 注目されている。欠陥が蓄積し破壊を引き起こす以 前のナノ欠陥の段階で検出でき、供用中の機器や構 造物の余寿命を非破壊で評価できると期待されてい

図2 *- 同時計測陽電子寿命測定の原理

るからである。しかしながら、従来の 同時計 測法やドップラー幅広がり法では、実際に現場で陽 電子寿命測定による非破壊検査を行うことはほとん ど不可能であった。図2の * 同時計測法を適用 すれば、従来法と異なり試料の形状や測定条件を選 ばず、非破壊・非接触で陽電子寿命測定ができ、現 場での非破壊検査器として利用できる。我々は、稼 動中の機器や構造物などの重要部材の損傷度・余寿 命を現場で診断することが可能な非破壊検査器の実 現を目指し、 * 同時計測法を用いた携帯型非破 壊診断陽電子寿命測定装置の開発をすすめている。

アバランシェ・フォトダイオードによる陽電 子検出

上述のように、 +- 同時計測の場合、試料と線 源の距離が離れていても、試料に入射する陽電子を 直接検出してスタート信号を得ることにより陽電子 寿命測定が可能である。陽電子を直接検出する手段 として、従来はプラスチック・シンクレーターとラ イトガイドと光電子倍増管の組み合わせが採用され てきたが、検出器が大きく検出効率にも問題があっ た(図3)。それを改良するために、電子やX線な どを高時間分解能かつ高い検出効率で検出できる半 導体放射線検出器の1つであるアバランシェ・フォ トダイオード(Avalanche Photodiode, APD)に着目 した。我々はAPD により世界で初めて直接陽電子 を検出し〔2〕、APD による +- 同時計測陽電子 寿命測定に初めて成功した〔3〕。

有効領域 5 mm × 5 mm、厚さ110 µ m の透過型 Silicon Avalanche Photodiode (EG&G Optoelectron ics; C30626 - CD2276)を用いた。降伏電圧が 340V であり、300V の電圧をかけた状態で使用した。 APDの内部増幅のみでは出力信号が小さ過ぎるため、

図3 プラスチックシンチレータを用いた +- 同時計測陽電子寿命測定システム。

増幅率 100 倍の低ノイズプリアンプ(Phillips Scien tific; 6954)を用いた。陽電子線源は、 12.7mmの 10g/m²ポリイミドフィルム(カプトン箔)中に密 封された1.2MBqの²²Na線源(Isotope Products Laboratories; POSK - 22)を用いた。

陽電子による出力信号として、立ち上がり時間 (risetime)約1.6ns、パルス高さ最大約1.5Vの APDによる²²Na 密封線源からの陽電子検出信号が 得られている(図4)、装置の時間分解能を左右する

図4 アヴァランシェ・フォトダイオードによる 透過陽電子検出信号。陽電子線源は²²Na。

と考えられる検出信号の立ち上がり時間は、BaF2 シンチレーターとPMTによる 線検出信号(立ち 上がり時間1.2ns)と比較すると、APDの方がやや 遅いものの、それほど大きな差ではなく、実用上十 分早い立ち上がり時間である。

線源からは、種々のエネルギーを持った陽電子が 放射される。APD を通過する陽電子のエネルギー によって失うエネルギーも違ってくるため、種々の 大きさの出力信号が検出される。実際に APD から の検出信号のパルスの高さ(陽電子が失うエネルギ ーに対応するもの)の分布をディファレンシャル・ コンスタント・フラクション・ディスクリミネーター (Differentoal Constant Fraction Discriminator, DCFD) を用いて測定すると、陽電子のエネルギー分布に対 応する波高分布が観測される。

5.アバランシェ・フォトダイオードを用いた陽 電子寿命測定

透過型 APD による陽電子の直接検出に成功した ので、これをスタート信号として用い、 +- 同時 計測陽電子寿命測定を行った〔3〕。ストップ信号は 試料からの消滅 線を BaF2 シンチレーターと PMT により検出した。APD の直近に 1.2MBg の ²²Na 密 封線源をセットし、APD の反対側に試料をセット した。APD を透過した陽電子はすべて試料内で消 滅する。PMT でストップ信号をとる際、APD のホ ルダーなど試料以外からの消滅線を除去するため、 BaF2とPMTの検出システムをもう1本対向させ、 同時検出系を構成した。すなわち、消滅線はほぼ 正反対の方向に2本放出されるため、陽電子が試料 内で消滅した時にのみ2本の消滅 線が両方の PMT に同時に入射することを利用した。この同時 信号を、時間差波高変換器 (Time-to-Amplitude Converter, TAC)から出力される陽電子消滅寿命の 信号のゲートとしてスペクトル測定を行い、試料の 陽電子スペクトルを得た。

BaF2 シンチレーターによる消滅 線の検出効率 は悪い(約10%)のため、上記の方法で装置の計数 率は約50cps であった。陽電子が線源から試料へ入 射する立体角と、試料からの消滅 線がストップ検 出系と同時検出系に同時に入射できる立体角を大ま かに見積もると、10⁻²オーダーの割合の計数率であ り、これにBaF2とPMTの消滅 線の検出効率と 合わせると10⁻⁴になる。1 MBq の強さの線源を使 用しているので、陽電子検出器を通過できないもの も考慮すれば、装置全体の計数率は1秒に50 カウ ント程度となる。

APD を用いた + 同時計測陽電子寿命測定装 置を検証するために、焼鈍された Ni と石英を試料 として用い、それぞれ室温にて陽電子寿命測定を行 った。測定は、1つの寿命スペクトル当たり約10⁶ カウントを収集した。それぞれの試料について、 同時計測法と同様の、両物質に固有のスペクトル が得られた(図5)。Niの寿命スペクトルについて PATFIT-88 プログラムのRESOLUTIONで解析する と、約120psの陽電子寿命値が得られ、時間分解能 (FWHM)は約240psであった。石英の寿命スペク トルについても同じ時間分解能が得られ、約330ps と1.4nsの2成分の陽電子寿命値が得られた[3]。 この時間分解能は、プラスチック・シンチレーター を用いた過去の *- 同時計測法の値と比べて明ら かに優れたものである。

 6 *- 同時計測法の材料劣化非破壊評価への 応用

世界で初めて APD を用いた新しい *- 同時計 測陽電子寿命測定装置を適用し、ステンレス鋼 SUS316 の疲労損傷度を精度良く評価できることが 明らかとなった(図6)。本装置は、3.7MBq(100 µCi)以下の⁶⁸Ge 陽電子密封線源を用いた。シス テム全体の時間分解能(FWHM)は、Somieskiら の 300ps と Hansen らの 280ps に比べて、220ps とい う優れたものであった [3 *A*]。

しかし、上記の装置においては、陽電子や消滅 線などの検出に2本のPMTを使用しなければなら

図6 SUS316ステンレス鋼の疲労の進展に伴う陽電子寿命変化 (アヴァランシェ・フォトダイオードを用いた *- 同時 計測陽電子寿命測定システムによる)。 四角印は一定歪(0.31%)、丸印は一定応力(220MPA)負 荷試験にそれぞれ対応。

ないため、実際に稼動中の機器や構造物などの重要 部材の損傷度・余寿命を現場で測定することは困難 である。また、装置の計測器システムもいくつもの 精密電子計測機器を組み合わせたものから成ってい るため、様々な現場までの運搬には不向きである。 現場でのその場非破壊検査装置として実用化するた めにはこれらの問題点を解決する必要があり、以下 に述べる陽電子検出および消滅 線検出を含めた検 出部の改良および計測器システムの簡略化・小型化 を進めた。

7. 一体型検出器の開発

現場での非破壊その場測定に使用しやすいように 陽電子検出および 線検出の両方を備え、陽電子寿 命測定が可能な新しい検出器の開発を試みた。 線 検出用のBaF2シンチレーターとPMTを陽電子検出 用のAPDと一体化させた。APDを通過しスタート 信号を与えた陽電子のみが被測定材料に入射するよ うに設計し、2本の消滅 線の同時性を取る必要を なくすことで、一体化された1つの検出器のみで陽 電子寿命測定が可能になる。現場測定の簡便さを考 慮しての検出器の小型化を図るために、外形の小さ い1インチのPMTを用いた。

開発した一体型検出器を用いて、いくつかの材料 における陽電子寿命の測定を行った。その結果、装 置全体の時間分解能を損なわずに陽電子寿命の測定 に成功した。さらに、2本の消滅 線の同時性を取 る必要がなくなったため装置の計数率が大幅に向上 した。これにより1つの寿命スペクトルの測定時間 が大幅に短縮され、実用上有用である。

8. デジタル・オシロスコープの利用

現場で実用する非破壊検査器としては、いくつも のアナログ精密電子計測機器を組み合わせた(BIN 電源とNIM モジュール)これまでの計測システム は不向きである。この複雑なアナログ機器を簡略・ 小型な計測システムにし、携帯に適したシステムに する必要がある。我々は、従来のアナログ電子計測 システム全体を最新の高性能なデジタル・オシロス コープで代用することにより、この問題を解決した。

従来の陽電子寿命測定の計測システムにデジタル・ オシロスコープを利用する試みは最近 Saito [5]ら とRysola [6] によりなされている。従来のアナロ グ計測システムに比べてやや計数率が低いものの、 デジタル・オシロスコープを用いた陽電子寿命スペ クトルの測定が可能であることが示された。Saito らが使用した、サンプリング速度4GS/s、周波数 帯域2GHzの高性能デジタル・オシロスコープを 用いた場合、従来のアナログ計測システムの時間分 解能(FWHM)を大きく上回る144psという優れた 性能が得られた。

現在、一体型検出器とデジタル・オシロスコープ の組み合わせによる陽電子寿命測定に成功し、さら なる計数率、時間分解能の向上を目指している。近 い将来、様々な現場での非破壊・非接触携帯型検査 器として実用できるものと期待している。

参考文献

- (1) 白井泰治、陽電子による構造解析技術;ま てりあ、第37巻、第1号(1998), pp61-67.
- (2) P. Chalermkarnnon、柚賀正雄、中田智、岸

本俊二、荒木秀樹、白井泰治、LADIOISO TOPES 50(2001)576-580.

- (3) P. Chalermkarnnon、河口恭寛、荒木秀樹、 白井泰治、日本金属学会誌 66(2002)1293-1296.
- (4), Y. Kawaguchi and Y. Shirai, Fatigue Evalua tion of Type 316 Stainless Steel Using Positron Annihilation Lineshape Analysis and *-Coincidence Positron Lifetime Measurement, J. Nuclear Science and Technology, 39(2002), 1033-1040.
- (5) H. Saito, Y. Nagashima, T. Kurihara and T. Hyodo, Nucl. Instrum. Methods A 487(2002), 612-617.
- (6) K. Rytsola, J. Nissila, J. Kakkonen, A. Laakso,
 R. Aavikko and K. Saarinen, Appl. Surf. Sci. 194(2002), 260-263.

