電子移動反応に立脚した分子エレクトロニクス

研究室紹介

松本卓也*

Key Words : molecular electronics, electron transfer protein, self-assembly, Coulomb blockade, stochastic resonance

Molecular electronics based on electron transfer reaction

1. はじめに

電子移動反応は、化学の広い分野で重要な基礎的 過程である。金属錯体の酸化還元、電極反応、光化 学反応、光合成初期過程、生体内の電子伝達過程な ど、多くの化学現象において、電子移動反応は核心 的役割を果たしている。これまで数多くの研究が行 われてきたが、その多くはMarcusによる溶媒の再 配向エネルギーの考え方を中心とするものであった。

ところが、近年のナノサイエンスの発展に伴って、 溶媒が存在しない環境における単一分子や分子ネッ トワークの電子移動を取り扱う必要が生じてきた。 単一分子では、トンネリングや量子伝導によるメカ ニズムが重要になる。一方、複数の分子が関与する 分子ネットワークでは、統計的なポテンシャルの揺 らぎや分布が電子移動を支配するようになる。我々 の研究室では、走査プローブ顕微鏡やナノスケール 電極を用いて、電子移動反応について調べるととも に、これに立脚した分子エレクトロニクスに関する 研究を進めている。ここでは、最近明らかになった 電子伝達タンパク質ネットワークの電子移動とその 応用について紹介する。

2. 酸化還元ネットワークシステム

シトクロムcはヘム鉄の酸化還元により容易に電 子の授受が可能であり、生体内の電子伝達系を支え

* Takuya MATSUMOTO 1960年7月生 現在、大阪大学 大学院理学研究科 化学専攻 反応物理化学研究室 教授 理学博士 走査プローブ顕微鏡、分子エ レクトロニクス TEL:06-6850-5400 FAX:06-6850-5403 E-mail:matsumoto-t@chem.sci.osaka-u.ac.jp る重要なタンパク質である。その構造は堅牢で、水 溶液中のみならず乾燥雰囲気や真空中でも電子伝達 能力を保持することが知られている。また、シトク ロムcはDNAと強く結合することから、DNA鎖を ステムとした自己組織的化ネットワークを形成し、 電子伝達タンパク質による分子回路を構築すること ができる。

このような優れた機能を持つシトクロムcを電子 素子として見ると、その電子的特性は酸化還元によ る二準位電子系で記述できる(図1(a))。二準位系 の電子的振る舞いは、クーロンブロッケードと電子 的に等価とみなすことができるので(図1(b))、シ トクロムcネットワークの電気特性を理解するため に、クーロンブロッケードネットワークに関する理 論を利用できる。

クーロンブロッケードネットワークの電気特性に ついては既に多くの研究がある。図2(a)にクーロ ンネットワークモデルの概略を示した。このモデル では、ネットワーク中の複数のクーロンブロッケー ドを経由して電流が流れる。このとき、クーロンネ ットワークの電流-電圧(I-V)特性は、 $I \propto$ { $(V/V_{th}) - 1$ }^ζで記述できることが、計算と実験 から示されている[1-5]。ここで、電流経路に存在 する複数のクーロンブロッケードの電荷蓄積エネル ギーの総和が閾値電圧 V_{th} に対応する。また、*ζ*は 電流経路の分岐の次元を示すパラメータである。

図2(b) はシトクロム c / DNA ネットワークの 電流-電圧(I-V)特性の実験結果(プロット)と、 クローンネットワークモデルによるフィッティング の結果(実線)である。ゼロバイアス近傍では、コ ンダクタンスは完全にゼロであり、正負対称な閾値 からの立ち上がりを示した。また、閾値電圧は温度 上昇とともにゼロに近づくことも明らかになっ た。I-Vカーブは、上記のモデルで完全にフィッ

図1.酸化還元、クーロンブロッケードおよびニューロンモデルの相似関係の概念図。
(a)分子の酸化還元。電子配置はクーロンブロッケードと等価になる。
(b)金属微粒子におけるクーロンブロッケード。階段状の電流一電圧特性を示す。
(c)神経細胞の発火を示すマッカロックーピッツのモデル。刺激に対して閾値を 持つステップ関数となる。

- 図2. (a) クーロンネットワークの電気伝導モデル。図中の小さな正方形がひとつのクーロ ンブロッケード素子を表す。
 - (b) シトクロム c / DNA ネットワークの低温における電流一電圧特性のプロットと クーロンネットワークモデルによる計算結果の比較。計算結果はほぽ完全に実験 結果を再現する。
 - (c) In { $(V/V_{th}) 1$ } に対する In(*I*) のプロットと計算結果のフィッティング。傾きは ζ 値に対応。
 - (d) $V_{\rm th}$ の温度依存性。フィッティングから求めた $V_{\rm th}$ は温度に対して直線に乗る。

トできることがわかる。このフィッティングでは、 図2(c)に示したように、ζ=2.5で70K以下の全て の実験データを記述することができる。温度Tは 任意に選べるパラメータではなく、実験で一義的に 決まる絶対値であるので、ζ値の変化なしに広い温 度範囲のデータを説明できることは、このモデルが 実験データを適切に解釈するものであることを示し ている[6]。

また、閾値電圧 V_{th}は伝導パスが開くバイアス値 であるので、温度(T)により大きく変化する。温 度が上がれば熱励起により、ネットワーク中の有効 なクーロンブロッケード数が減少するので、V_{th}は ゼロに近づく。クーロンネットワークモデルによれ ば、V_{th}は温度に対して、負の一次の依存性を持っ ている。実際、図2(d)に示したように、フィッテ ィングの結果から得られた V_{th}の温度特性は直線と なり、低次元クーロンネットワークモデルを用いた 考え方が適切であることを示している。

3. 確率共鳴現象

以上のように、電子伝達タンパク質シトクロムc から構成された電子移動反応ネットワークは二準位 電子系ネットワークとして取り扱うことができるこ と、さらにクーロンブロッケードネットワークの理 解のために構築された理論が適用可能であることが 明らかになった。このシステムではネットワークを 構成する個々の素子に強い非線形性を含むので、確 率共鳴が期待できる。そこで、微弱信号にホワイト ノイズを重ね合わせて、シトクロム c / DNA ネッ トワークに入力することにより、閾値以下の微弱信 号の復元を試みた。図3(a)に示したように、入力 した方形波が検出限界以下の微弱信号であるときに は、出力には何ら信号は現れない[6]。ところが、 入力信号にノイズを加えていくと、入力に同期した 出力信号が現れる。このようにノイズに助けられて 閾値を超えて出力が現れる現象は典型的な確率共鳴 である。確率共鳴の特徴として、ノイズの最適値が 存在することが知られている。図3(b)に示したよ うに、相関係数は比較的小さなノイズで飽和するが、

 図3. (a) シトクロム c / DNA ネットワークデバイスへの入力信号と出力信号。ノイズが 大きくなると入力の微弱信号に対応した出力信号が得られる。
 (b) 相関係数(C.C.)のノイズ電圧依存性。
 (c) 信号対雑音比(S/N)のノイズ電圧依存性。

S/N 比では図3(c)のように明確なピークが現れている。すなわち、シトクロム c / DNA ネットワークという分子システムが、確率共鳴の働きを持つデバイスとして機能していることがわかる。

4. おわりに

タンパク質における電子移動反応のネットワーク が確率共鳴現象を示すことを紹介した。これは、シ トクロムcの酸化還元に基づく二準位電子システム が強い非線形性を有することに起因している。この ような非線形動作を神経細胞の発火現象とみなすと (図1(c))、そのネットワークはニューラルネット ワークに相当する。すなわち、言い過ぎを恐れずに 言えば、生物のような情報処理が分子ネットワーク という材料で可能であることを意味している。電子 移動反応に基づく分子情報システムという新しい分 野が開けることを夢見ている。

参考文献

- 1. Zabet-Khosousi, A.; Dhirani, A.-A., *Chem. Rev.***108**, 4072-4124 (2008).
- Middleton, A. A.; Wingreen, N. S., *Phys. Rev. Lett.* 71, 3198-3201 (1993).
- Narumi, T.; Suzuki, M.; Hidaka, Y.; Asai, T.; Kai, S., *Phys. Rev. E* 84, 051137-051141 (2011).
- Narumi, T.; Suzuki, M.; Hidaka, Y.; Kai, S., J. Phys. Soc. Jpn. 80, 114704-114711 (2011).
- Hirano, Y.; Segawa, Y.; Yamada, F.; Kuroda-Sowa, T.; Kawai, T.; Matsumoto, T., *J. Phys. Chem. C* 116, 9895-9899 (2012).
- Hirano, Y.; Segawa, Y.; Kawai, T.; Matsumoto, T., J. Phys. Chem. C 117, 140-145 (2013).

