川 村

光*

カイラリティとナノ超構造

Chirality and nano-scale superstrucure Key Words : Chirality, Frustration, Superstructure, Topological excitation

「フラストレーション」という言葉は、日常生活 でも良く使われるお馴染みの言葉です。もっとも、 通常あまり良い意味ではなく、物事が思い通りに行 かずイライラしてフラストレーションが溜まる、と いった感じで使われますが。フラストレーションと いうと、このようにとても人間臭い言葉なのですが、 実は、物性物理学の分野でも近年「フラストレーシ ョン」という概念が注目されています[1-6]。幾何 学的フラストレート磁性体と呼ばれる一連の磁性体 が、その典型的な例です。図1に示したのは、3角 形の各頂点に3個の磁気モーメント(スピン)があ って、隣り合うスピン間には互いの向きを逆向きに しようとする"反強磁性的な"相互作用が働いてい る状況です。仮にスピンは「上向き」か「下向き」 かの2つの状態のみを取るとすると(イジングスピ ン)、3角形上の全てのスピン対を互いに逆向きに することは不可能で、どこかでエネルギーが上がっ てしまいます。「あちらを立てればこちらが立たず」 という状況です。例えば図中?で示したスピンは、 上を向こうが下を向こうが系のどこかで必ずエネル ギーが上がってしまうわけで、これはフラストレー ションそのものです。

上のイジングスピン例では、スピンの取り得る向 きは上向きと下向きの2つのみとしましたが、多く の現実の磁性体では、スピンは"斜め"向きも取る

* Hikaru KAWAMURA

1954年9月生 東京大学大学院理学系研究科物理学専攻 (1982年) 現在、大阪大学理学研究科 宇宙地球科 学専攻 教授 理学博士 物性理論 TEL:06-6850-5543 FAX:06-6850-5494 E-mail:kawamura@ess.sci.osaka-u.ac.jp

図1:3角形上の反強磁性的にカップルした 3個のイジングスピン。

ことが出来ます。このようなより一般的なベクトル スピンの場合にフラストレーションがあると、スピ ンはお互いに傾いた構造を取ります。1個の3角形 の例では、下図のように120°傾くことになります。 興味深いことに、スピンがこのように傾くと、それ に伴って、スピンの周りー「右回り」か「左回り」 か一の自由度が新たに出現します(図2)。この「右・ 左」の自由度のことを、「**カイラリティ**」と呼びます。 このカイラリティ自由度は、フラストレーションの ためスピンが単純な平行や反平行ではない傾いた構

図2:3 用形上の反風磁性的にカッフルした3 個の ベクトルスピン。120 度構造を形成する。 右回り(カイラリティ+)と左回り(カイラ リティー)の構造がある。 造を形成したために初めて出現した、新たな内部自 由度です。

実は、フラストレーションした磁性体ーフラスト レート磁性体ーでは、マクロなレベルでスピン系は しばしばカイラルな構造をとります。そのようなカ イラルな構造のユニットは、通常、ナノスケールの オーダーとなります(**ナノ**超構造)。また、スピン 系がフラストレーションのため形成する、このよう なナノ超構造は、トポロジカルな安定性を持つこと が多いのです。例えばカイラリティの「プラス・マ イナス」は、スピン構造の「右・左」に対応してい て、連続的な変形で壊したり変化させたりすること が出来ません。マクロな結晶中で実現されるカイラ ルなスピン超構造の例として、図3と4に、2つの 例を挙げました。図3は「Z2渦」と呼ばれるスピ ンの渦構造で、図2で示した単一の3角形上の120 度構造が、中心コアの周りにぐるっと回転した構造 になっています [7-9]。図4は「スカーミオン」と 呼ばれる超構造で、遠方で上向きを向いたスピンが 中央のコアでは下向きを向いており、途中のスピン は中央コアに向かって渦を巻きながら倒れこむよう な構造になっています [10-14]。いずれも、ナノス ケールオーダーのトポロジカルに安定なスピン超構 造です(トポロジカル励起、トポロジカル・テクス チャと呼ばれることもあります)。

このような、カイラリティ自由度を内包したトポ ロジカルに安定なナノ超構造は、フラストレート磁 性体において、励起状態としてばかりでなく、しば しば、自由エネルギー最低の安定状態としても実現 されます。例えば、図4に示したスカーミオンは、 ある種の磁性体を適当な磁場と温度の条件下に置く と、スカーミオンが周期的に配列した安定な「スカ ーミオン結晶」を形成することが、観測されていま

図3:Z₂渦。

す。このような、フラストレーションが誘起するナ ノ超構造は、系の相構造といった熱力学的な性質の みならず、電気伝導等の輸送性質についても、フラ ストレーションがない系では見られないような新奇 な性質を誘起します。

詳細に興味をお持ちの読者には引用文献をご覧頂 くことにして、以下では、どのような性質が観測あ るいは期待されているかについて、ごく大雑把に述 べます。図3のZ2渦は、通常の巻き数ではなくパ リティに対応するZ2トポロジカル量子数で特徴付 けられるような大変奇妙な渦です。その対解離が、 新奇な**トポロジカル相転移**(ないしはクロスオーバ ー)を駆動すると期待されていますが [7.8]、その 詳細については未だ良く判っていません。また、こ のZ。渦励起を含むトポロジカル励起のダイナミク スは、特に興味深い問題です。Z2渦の場合、中性 子散乱等で観測可能な動的構造因子に特徴的なパタ ーンを与えることが予想されており、今後の測定が 期待されます [9]。図4のスカーミオンは、近年集 中的な研究が進み、その相構造やダイナミクスにつ いて多くの新奇な性質が明らかになってきました [10-14]。ローレンツ電顕を用いたスカーミオン格

図4:スカーミオン(左)と反スカーミオン(右)。

子の直接撮像なども可能になっています。とりわけ、 その電磁応答は興味深く、スカーミオン格子が巨大 なトポロジカルホール効果(印加電流の横方向に電 位差を生じる現象)を誘起したり、あるいはその反 作用としてスカーミオン格子自体が横方向に動くと いった効果(スカーミオン・ホール効果)も見出さ れています。

ところで、カイラリティにはプラス・マイナス (右・左)の別があった訳ですが、その右・左の自 由度がカイラリティ起源のナノ超構造にはどのよう に反映されるのでしょうか?実はスカーミオンの場 合には、カイラリティのプラス・マイナスは、「ス カーミオン」に対する「**反スカーミオン**」として現 れます。スカーミオンと反スカーミオンを、図4の 左右に示しました。両者では、外側のスピンが中心 に向かって倒れこむときの巻き方が逆になっていま す。この差は、例えば、ホール効果で誘起されるホ ール電圧の符号の差として現れます。実は、この反 スカーミオンはある種の条件下でその存在が理論的 に予想されていますが[14]、まだ実験的には観測 されていません。今後の観測が期待されるところで す。

系にフラストレーションが存在するときには、系 の安定状態や励起状態がナノスケールのカイラルな 構造を持つというのは、そう特殊なケースではない と期待されます。その物性探査と制御に係る基礎研 究は未だ始まったばかりですが、今後の大きな発展 が期待される分野ではないかと思います。ナノスケ ールの構造体を作成しその機能を利用するというの は、現代のテクノロジーの主流となっている方向で す。通常、そのようなナノスケールの構造体は、ナ ノテクを駆使して人工的に作成するわけで、これは 謂わば「トップダウン」の方法と言えるでしょう。 これに対し、拙稿で紹介したナノ超構造は、フラス トレーションにより系自体に自己生成される、謂わ ば「ボトムアップ」型とでもいうべきものです。地 道な基礎研究の積み重ねがまだまだ必要な段階です が、その制御と機能化は将来の新しい潮流を拓く可 能性を秘めているのではないでしょうか。

参考文献

 Frustrated Spin Systems ed. by H.T. Diep (World Scientific Publishing, Singapore, 2004)

- Novel States of Matter Induced by Frustration ed. by H. Kawamura, Special Topics, J. Phys. Soc. Jpn. 79, 011001 (2010).
- Introduction to Frustrated Magnetism ed. by C. Lacroix, P. Mendelse and F. Mila (Springer, Berlin 2011).
- 「矛盾が引き起こすエキゾチックな現象:幾何 学的フラストレーション」R.メスナー、A.P. ラミレス、川村光訳,パリティ(丸善)21巻9 号 (2006) p.20.
- 5)「フラストレート系の新物性」川村光,パリティ (丸善)22巻1号 (2006) p.25.
- (6) 文部科学省・科学研究補助金・特定領域研究「フ ラストレーションが創る新しい物性」ホーム ページ (http://www.frustration.jp)
- H. Kawamura and S. Miyashita, J. Phys. Soc. Jpn. 53, 4138 (1984).
- H. Kawamura, A. Yamamoto and T. Okubo, J. Phys. Soc. Jpn. 79, 023701 (2010).
- T. Okubo and H. Kawamura, J. Phys. Soc. Jpn. 79, 084706 (2010).
- U.K. Roßler, A.N. Bagdanov and C. Pfleiderer, Nature 442, 797 (2006).
- S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, Science 323 915 (2009); W. Münzer, A. Neubauer, T. Adams, S. Mühlbauer, C. Franz, F. Jonietz, R. Georgii, P. Böni, B. Pedersen, M. Schmidt, A. Rosch, and C. Pfleiderer, Phys. Rev. B 81, 041203(R) (2010).
- 12) X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, Nature 465, 901 (2010); X. Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Z. Zhang, S. Ishiwata, Y. Matsui, and Y. Tokura, Nature Mat. 10, 106 (2011); S. Seki, X. Z. Wu, S. Ishiwata and Y. Tokura, Science 336, 198 (2012).
- S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blügel, Nature Phys. 7, 713 (2011).
- 14) T. Okubo, S. Chung and H. Kawamura, Phys. Rev. Letters, 108, 017206 (2012).