分子性伝導体における巨大磁気抵抗

花 咲 徳 亮*

Giant Magnetoresistance in Molecular Conductor Key Words : Giant Magnetoresistance, Phthalocyanine, Strongly Correlated Electron System

1. はじめに

現代社会では大量の情報がやり取りされ活用され ている。ハードディスクは情報を磁気的な状態とし て保存するための不可欠な装置である。私が学生だ った頃は容量が数メガバイトくらいしかなかったが、 今ではテラバイト程度まで向上し驚くべき進歩を遂 げている。以前は小さなコイルでディスクの磁気的 な状態を読み取っていたが、磁気抵抗素子の発明に よって検出感度が向上したため、より微小な領域の 磁気状態を読み取れるようになっている。この磁気 抵抗素子には磁場印加によって電気抵抗が急激に変 化する巨大磁気抵抗効果が利用されている [1,2]。

金属中の伝導電子は磁場によってローレンツ力で 曲げられ電気抵抗が増加する。しかし、磁気抵抗素 子として用いるには応答効率が十分ではない。一方、 局在的な電子(局在スピン)は磁気的な性質を有し ており磁場に対する応答性に優れているが、電気伝 導には関与しない。両者の間に相互作用を導入すれ ば、伝導電子の状態が磁場に対して敏感になり電気 抵抗に大きな変化を起こさせる事ができる。巨大磁 気抵抗効果を示す多くの無機物質では、遷移金属の 3d 電子が伝導電子と局在スピンの両方の役割を果 たしている。例えば、ペロブスカイト型マンガン酸 化物では3d 軌道が結晶場によって eg 軌道と t2g 軌 道に分裂するが、eg 電子は伝導性を有しており、

* Noriaki HANASAKI

1968年生 現在、大阪大学大学院理学研究科物理学 専攻 教授 博士(学術) TEL:06-6850-5751 E-mail:hanasaki@phys.sci.osaka-u.ac.jp t_{2g}電子は局在性が強く局在スピンとなる(図1(a))。 その両者の間にはフント結合という強い相互作用が ある。

分子を構成要素とする物質で巨大磁気抵抗を実現 するには、両方の性質をもつ分子が必要であるが、 フタロシアニン分子はこの目的に適している。本研 究ノートでは、フタロシアニン分子系の物質で観測 される巨大磁気抵抗効果について紹介したい。

図1 (a) 伝導電子と局在スピンが存在するエネルギー
 準位の比較
 (b) ジシアノ鉄フタロシアニン分子の構造

2. フタロシアニン分子

フタロシアニン(Pc)分子は、昔から青色の塗 料の原料として利用されてきた身近な分子である。 フタロシアニン分子は、図1(b)に示した様に環状 の分子であるが、分子の中心に遷移金属を内包させ る事ができる。これまで私は、鉄原子がフタロシア ニン分子に内包されシアノ基も配位している分子を 主な研究対象としてきたが、この分子の形は、図に 示した様にコマにたとえる事もできる。分子軌道計 算によると、電子が存在する分子軌道の中でエネル ギーが最も高い軌道(HOMO)は、フタロシアニ ン分子の炭素や窒素のπ軌道から構成されている。 この軌道は図2に示した様に分子全体に分布してお り、別の分子が近くにあると分子間で分子軌道が重 なりやすく、主に電気伝導性を担う。以下で HOMOにある電子を簡単にπ電子と呼ぶ事にする。 HOMO よりエネルギーが一つ低い分子軌道として next HOMOs がある。図に示したように、分子中 心にある鉄原子の3d軌道の寄与が大きく、多くは 分子の中心に分布している。これらの軌道は dxz 軌 道または dvz 軌道を反映しており縮退している。ま た分子間で分子軌道の重なりが比較的小さいため、 この軌道に存在する電子は局在的な傾向が強い。以 後next HOMOsにある電子を簡単にd電子と呼ぶ 事にする。伝導性を担うπ電子と局在性の強いd電 子が同じ分子内にあるため、両者の間に強い分子内 相互作用が期待できる。

ジシアノ鉄フタロシアニン分子で構成されている 結晶の構造を図3に示す[3]。フタロシアニン分子 面が平行に重なるように積層している。π電子の軌 道がフタロシアニン分子面に対して垂直な方向に伸 びているので、分子軌道が重なりやすくなっている。 このため、分子間で分子軌道が繋がっている方向 (*c*軸方向)に伝導電子が動きやすい1次元的な電 子系が形成されている。

図3 TPP[Fe(Pc)(CN)2]2の結晶構造 (Pc:phthalocyanine, TPP:tetraphenylphosphonium)

3. 巨大磁気抵抗

図3の結晶において測定した電気抵抗の磁場依存 性を図4に示す [4,5]。磁場を印加する事によって 電気抵抗が2桁以上減少している。この電気抵抗の 減少は磁場方向に対して顕著な異方性を持つ。磁場 をシアノ配位子方向に向けると磁化が大きく誘起さ れ、磁気抵抗も大きくなる [6]。この磁気異方性は、 フタロシアニン分子に4回対称性があり分子軌道 (next HOMOs)が縮退している事に起因している。 この分子軌道は d_{xz} 軌道または d_{yz} 軌道を反映して いるが、元々磁気量子数 $m_l = \pm 1$ の軌道からなっ ている。そのためスピン軌道相互作用が加わると、 これらの分子軌道が混ざり軌道角運動量が大きな値 を持つようになる。実際、電子スピン共鳴を測定す るとg値が0.5~3.6の値(g = 3.6の主値はシアノ 基に近い方向)を持つ事が分かった [6]。このよう

図2 ジシアノ鉄フタロシアニン分子の分子軌道

に磁気抵抗の異方性は分子の形状を反映している。

次に低温における基底状態について述べたい。フ タロシアニン分子系の伝導体は温度を下げていくと 電気抵抗が上昇する事が多い。これは電子間のクー ロン反発が強いため、低温で電荷が秩序した高抵抗 の状態になるからである[7]。この電荷秩序は、ク ーロン反発によって電子同士が遠ざかろうとするた め、図4の挿入図に示したようにπ電子の密度が濃 い分子、薄い分子、濃い分子、薄い分子という様に 電子が交互に並ぶ現象である。クーロン相互作用が 電子系の運動エネルギー(トランスファーエネルギ ー) に匹敵した大きな値を持つ強相関電子系ではよ く見られる現象である。一方、d電子は、磁気トル ク測定から低温でスピンが反平行に並ぶ反強磁性状 態になる事が分かった [8]。反強磁性状態にある d 電子は、分子内相互作用によってπ電子系の電荷秩 序を安定化していると考えられる。次に磁場による 影響について述べる。14 テスラ程度の磁場印加に よってd 電子の局在スピンはほぼ一方向に揃うよう になる。このメタ磁性転移に伴って電気伝導度の急 激な上昇(電気抵抗の減少)も起きる [9]。局在ス ピンの強制強磁性状態がπ電子の電荷秩序の安定性 を低下させたと考えられる。

π電子とd電子の分子 内相互作用によって、π電子はわずかにスピン偏極 している。このπ電子がスピン状態を保持しながら 隣りの分子に移動したとしよう。もしd電子が反強 磁性的に秩序していれば、π電子とd電子のスピン が逆向きになってしまう。この結果、分子内相互作 用の分だけ伝導電子のエネルギーが上がってしまう ので、π電子系のクーロン相互作用を有効的に増強 する働きをしている。ゆえに、d電子の反強磁性状 態はπ電子系の電荷秩序状態を安定化させている。 ところが、磁場の印加によってd 電子の局在スピン が一方向に揃うと、上記で述べた分子内相互作用に よる効果はなくなり π 電子の電荷秩序の安定性は減 少してしまう。これがフタロシアニン分子系伝導体 で観測されていた巨大磁気抵抗の機構であると考え られる。

4.まとめ

フタロシアニン分子系の伝導体で観測される巨大 磁気抵抗について紹介した。フタロシアニン分子で は分子軌道における軌道角運動量が大きな値をもつ ため、磁性や磁気抵抗に顕著な異方性が現れる。ま た電子間クーロン反発が強いため π 電子の電荷が秩 序した状態が生じる。d電子の局在スピンは分子内 相互作用を介して π 電子の電荷秩序の安定性を調節 している。これが巨大磁気抵抗の原因である事を述 べた。フタロシアニン分子は中心に様々な遷移金属 を挿入する事ができるので、 π 電子系とd電子系の 相関効果が起きる絶好の舞台である。またd電子の 自由度には上記で述べたスピンだけではなく電荷や 軌道もあり、これらが π 電子系に与える影響も興味 深いと思われる。

謝辞本研究に協力していただきました共同研究 者の皆様、そして生産と技術への執筆を勧めてくだ さった下田先生に感謝いたします。

Reference

- M. N. Baibich, J. M. Broto, A. Fert, A, F. N. Vandau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
- [2] G. Binasch, P. Grunberg, F. Saurenbach, W. Zinn, Phys. Rev. B 7, 4828 (1989).
- [3] M. Matsuda et al., J. Mater. Chem. 10, 631 (2000).
- [4] N. Hanasaki et al., Phys. Rev. B 62, 5839 (2000).
- [5] N. Hanasaki et al., J. Phys. Soc. Jpn. 75, 033703 (2006).
- [6] N. Hanasaki et al., J. Phys. Soc. Jpn. 72, 3226 (2003).
- [7] N. Hanasaki et al., J. Phys. Soc. Jpn. 75, 104713 (2006).
- [8] H. Tajima et al., Phys. Rev. B 78, 064424 (2008).
- [9] N. Hanasaki et al., J. Phy. Soc. Jpn. 82, 094713 (2013).